Abstract

We describe three new strategies for determining heterogeneous reaction rates using photomicroscopy to measure the rate of retreat of metal surfaces: (i) spheres in a stirred solution, (ii) microscopic powder in an unstirred solution, and (iii) spheres on a rotating shaft. The strategies are applied to indium-mediated allylation (IMA), which is a powerful tool for synthetic chemists because of its stereoselectivity, broad applicability, and high yields. The rate-limiting step of IMA, reaction of allyl halides at indium metal surfaces, is shown to be fast, with a minimum value of the heterogeneous rate constant of 1 × 10(-2) cm/s, an order of magnitude faster than the previously determined minimum value. The strategies described here can be applied to any reaction in which the surface is retreating or advancing, thereby broadening the applicability of photomicroscopy to measuring heterogeneous reaction kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.