Abstract

Robust predictive models of the effects of habitat change on species abundance over large geographical areas are a fundamental gap in our understanding of population distributions, yet are urgently required by conservation practitioners. Predictive models based on underpinning relationships between environmental predictors and the individual organism are likely to require measurement of spatially fine-grained predictor variables. Further, models must show spatial generality if they are to be used to predict the consequences of habitat change over large geographical areas. Remote sensing techniques using airborne scanning laser altimetry (LiDAR) and high resolution multi-spectral imagery allow spatially fine-grained predictor variables to be measured over large geographical areas and thus facilitate testing of the spatial generality of organism-habitat models. These techniques are considered using the skylark as an example species. A range image segmentation system for LiDAR data is described which allows measurement of skylark habitat predictor variables such as within-field vegetation height, boundary height and shape for individual fields within the LiDAR image. Additional variables such as field vegetation type and fractional vegetation ground cover may be obtained from co-registered multi-spectral data. These techniques could have wide application in testing the generality of relationships between populations and habitats, and in ecological monitoring of change in habitat structures and the associated effects on wildlife, over large geographical areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call