Abstract

A fundamental challenge in plant physiology is independently determining the rates of gross O2 production by photosynthesis and O2 consumption by respiration, photorespiration, and other processes. Previous studies on isolated chloroplasts or leaves have separately constrained net and gross O2 production (NOP and GOP, respectively) by labeling ambient O2 with 18O while leaf water was unlabeled. Here, we describe a method to accurately measure GOP and NOP of whole detached leaves in a cuvette as a routine gas-exchange measurement. The petiole is immersed in water enriched to a δ18O of ∼9,000‰, and leaf water is labeled through the transpiration stream. Photosynthesis transfers 18O from H2O to O2 GOP is calculated from the increase in δ18O of O2 as air passes through the cuvette. NOP is determined from the increase in O2/N2 Both terms are measured by isotope ratio mass spectrometry. CO2 assimilation and other standard gas-exchange parameters also were measured. Reproducible measurements are made on a single leaf for more than 15 h. We used this method to measure the light response curve of NOP and GOP in French bean (Phaseolus vulgaris) at 21% and 2% O2 We then used these data to examine the O2/CO2 ratio of net photosynthesis, the light response curve of mesophyll conductance, and the apparent inhibition of respiration in the light (Kok effect) at both oxygen levels. The results are discussed in the context of evaluating the technique as a tool to study and understand leaf physiological traits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.