Abstract

Recent studies have demonstrated that grain boundary triple junctions are crystal defects with specific thermodynamic and kinetic properties. In this study we address the energy of triple lines. Previously, a geometrical model was proposed to determine the grain boundary line tension. The current study introduces a thermodynamically correct approach which allows direct and precise measurement of the triple line energy. The experimental technique utilizes the measurement of the surface topography of a crystal in the vicinity of a triple junction by atomic force microscopy. The grain boundary triple line tension γTPl of a random triple line in a copper tricrystal was measured to be 6.3±2.8×10−9Jm–1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call