Abstract

G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in eukaryotic genomes. They control a variety of cellular and physiological processes such as hormone secretion and heart rate, and therefore are associated with a majority of pathological conditions including cancer and heart diseases. Currently established assays to measure ligand-induced activation of GPCRs and G proteins possess limitations such as being time consuming, indirect, and expensive. Thus, an efficient method to measure GPCR-G protein activation is required to identify novel pharmacological modulators to control them and gain insights about molecular underpinnings of the associated pathways. Activation of GPCRs induces dissociation of G protein heterotrimers to form GαGTP and free Gβγ. Free Gβγ subunits have been shown to translocate reversibly from the plasma membrane to internal membranes. Gβγ translocation therefore represents the GPCR-G protein activation, and thus, imaging of this process can be used to quantify the kinetics and magnitude of the pathway activation-deactivation in real time in living cells. The objective of this chapter is to elaborate the protocols of (i) generation and optimization of the required sensor constructs; (ii) development of cell culture, transient transfection, imaging, and optogenetic procedures; (iii) imaging and data analysis methods; and (iv) stable cell line generation, pertaining to this assay to measure GPCR-G protein activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call