Abstract

Erythrocytes from individuals with sickle cell anemia have previously been shown to have increased levels of intracellular oxidants and increased oxidative damage. Oxidative damage has been implicated in the events leading to the painful crises and hemolytic anemia found in sickle cell anemia. Since the pentose phosphate pathway (PPP) is an important source of reducing capacity in erythrocytes, we have investigated the fluxes through the PPP in normal and sickle cell erythrocytes using [2- 13C] D-glucose and carbon-13 nuclear magnetic resonance (NMR) spectroscopy. Our results indicate that sickle cell erythrocytes have a flux through the PPP of 0.13±0.02 μmol/h per ml erythrocytes that is comparable to that in normal erythrocytes, 0.21±0.02 μmol/h per ml erythrocytes. However, when stimulated with methylene blue, sickle cell erythrocytes show a decreased response, 0.59±0.10 μmol/h per ml erythrocytes, compared to normal erythrocytes, 1.64±0.10 μmol/h per ml erythrocytes. When homogeneous populations of sickle cell erythrocytes are isolated by density gradient centrifugation, the rate of flux through the PPP in methylene blue-stimulated sickle cell erythrocytes, 1.16±0.16 μmol/h per ml erythrocytes, approaches that in methylene blue-stimulated normal erythrocytes. In addition, by analyzing the dose response to methylene blue, we have found that the decreased stimulation of the PPP by methylene blue in heterogeneous populations of sickle cell erythrocytes is a failure of methylene blue to simulate the PPP rather than a deficiency in the PPP in sickle cell erythrocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call