Abstract

The adiabatic film cooling effectiveness for the first-stage vane and endwall of a gas turbine were investigated in a low speed cascade using the pressure sensitive paint (PSP) technique. The cascade consisted of four linear vanes. The tested Reynolds number based on the vane chord and vane exit velocity was 7.15 × 105. The overall blowing ratio of the coolant was controlled between 1 to 2, and two density ratios, 1.5 and 2.0, were tested. In order to test the different density ratios, two different coolants were used, one carbon dioxide and the other a mixture of nitrogen and sulfur hexafluoride. All cases showed clear traces of coolant on the vane surfaces and the endwall. The film cooling effectiveness near the film cooling holes was very high and gradually decreased downstream. The coolant trace showed an almost two-dimensional distribution on the pressure side. However, the coolant on the suction side shifted mid-span due to the passage vortex. Generally, the film cooling effectiveness on the vane and the endwall increased as the blowing ratio increased. The film cooling effectiveness on the vane was strongly affected by the shower head injection. Depending on the blowing ratio, the effect of density ratio on the vane surface film cooling effectiveness was varied. On the endwall, the film cooling effectiveness was higher for higher density ratio cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call