Abstract
The paper is focused on the importance of accurate determination of surface damage/ablation threshold of a dielectric material irradiated with femtosecond laser pulses. We show that different damage characterization techniques and data treatment procedures from a single experiment provide complementary physical results characterizing laser–matter interaction. We thus compare and discuss two regression techniques, well adapted to the measurement of laser ablation threshold, and a statistical approach giving the laser damage threshold and further information concerning the deterministic character of femtosecond damage. These two measurements are crucial for laser micromachining processes and high peak-power laser technology in general.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.