Abstract

A novel approach is proposed for determining exciton transport parameters in conjugated polymers. Exciton dynamics of conjugated polymer nanoparticles doped with dyes were investigated by time-resolved fluorescence spectroscopy. Highly efficient energy transfer from the polymer PFBT to the dye perylene red was evident in the fluorescence spectra and excited state kinetics. Exciton transport parameters were obtained by fitting to a model that included the effects of nanoparticle size, exciton diffusion, energy transfer, and quenching by defects. The results indicate substantial quenching by defects, owing primarily to exciton diffusion, which can greatly increase the effective quenching volume of defects. We estimated the amount of quenching by defects, and included quenching by defects in our model, yielding an estimated exciton diffusion length of 12 nm and diffusion constant of 8.0 × 10–9 m2 s–1 for nanoparticles of PFBT. The results indicate that quenching by defects can lead to substantial error in de...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.