Abstract

We present two phenomenological models describing the flowing erythrocyte orientation rate. The first concerns the onset of a stable orientation in a very dilute erythrocyte suspension. It is based on a simple formula for erythrocyte elongation as a function of shear stress, and we assume that beyond a threshold of elongation, erythrocytes take on a stable orientation, while below this threshold, they have a flipping motion. We extend this model to high hematocrit values assuming that the effect of red cell collisions imposes a random moment to each erythrocyte, shifting it from its stable orientation. We obtain an approximate expression for erythrocyte orientation rate as a function of shear rate and then we compare these results to our experimental data in part III of this series.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.