Abstract

Thermoluminescence dosimetry is considered as an effective method in estimating the absorbed doses to organs in different imaging modalities. The present study focuses on dosimetry in dual-energy X-ray absorptiometry scans, for patients, and phantoms in various imaging centres. The cubical LiF (Mg, Ti) thermoluminescence dosemeters were inserted inside the holes of the Rando phantom slabs, to measure the absorbed dose to different organs in the whole body and lumbar scans. According to the results the maximum entrance skin dose was found to be 202.06μGy for Hologic discovery W, which uses the fan beam scanning mode. The Norland XR-800 device took the scans with a much lower dose, as it uses the pencil beam for scanning the patients. The results of the study show that the radiation beam type, patient thickness, imaging technique and scan time may affect the radiation dose received by patient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call