Abstract
Using the method developed by Gurvitz of solving Schrdinger equations and the numerical calculation, we investigate the oscillation and the entanglement of the two opposite-spin electrons in coupled quantum dots, and show how to read out the entanglement by quantum point-contact detector. The results show that the two electrons start to entangle due to Coulomb interaction, and then they move together with Coulomb interaction augmenting, similar to the oscillation of an electron in a qibit. In this case, we locate a quantum point contact detector near one of the quantum dots, and the entanglement information can be obtained by changing the current.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.