Abstract

This paper discusses the measurements of endwall heat transfer and pressure drop in a wedge-shaped duct inserted with an array of circular pin fins. The endwall surface is coated with a thin layer of thermochromic liquid crystals and a transient test is run to obtain detailed heat transfer distributions. Parametric studies include Reynolds number (10,000⩽ Re⩽50,000), outlet flow orientation (straight and lateral) and pin configuration (staggered and in-line). The wedge duct has a convergent angle of 12.7°. The pin spacing-to-diameter ratios along the longitude and transverse directions are fixed at s x / d= s y / d=2.5. Pin-less wedge duct results are also obtained for comparison. Results indicated that the straight wedge duct with a staggered pin array is most recommended because of its significant endwall heat transfer and moderate pressure-drop penalty; while the turned wedge duct with a staggered pin array is least recommended since it yields the highest pressure drops and raises severe hot spots. A similarity of the pin Reynolds-number dependence of row-averaged Nusselt number is developed in the present wedge duct of accelerating flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call