Abstract

Small volume chamber tensometric myography is a commonly used technique to evaluate the vascular contractility of small and large blood vessels in laboratory animals and small arteries isolated from human tissue. The technique allows researchers to maintain isolated blood vessels in a tightly controlled and standardized (near-physiological) setting, with the option of adjusting to various environmental factors, while challenging the isolated vessels with different pharmacological agents that can induce vasoconstriction or vasodilation. The myograph chamber also provides a platform to measure vascular reactivity in response to various hormones, inhibitors, and agonists that may impact the function of smooth muscle and endothelial layers separately or simultaneously. The blood vessel wall is a complex structure consisting of three different layers: the intima (endothelial layer), media (smooth muscle and elastin fibers), and adventitia (collagen and other connective tissue). To gain a clear understanding of the functional properties of each layer, it is critical to have access to an experimental platform and system that would allow for a combinational approach to study all three layers simultaneously. Such an approach demands access to a semi-physiological condition that would mimic the in vivo environment in an ex vivo setting. Small volume chamber tensometric myography has provided an ideal environment to evaluate the impact of environmental cues, experimental variables, or pharmacological agonists and antagonists on vascular properties. For many years, scientists have used the tensometric myograph technique to measure endothelial function and smooth muscle contractility in response to different agents. In this report, a small volume chamber tensometric myograph system is used to measure endothelial function in the isolated mouse aorta. This report focuses on how small volume chamber tensometric myography can be used to evaluate the functional integrity of the endothelium in small segments of a large artery such as the thoracic aorta.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.