Abstract

The Galaxy is filled with cosmic-ray particles, mostly protons with kinetic energies greater than hundreds of megaelectronvolts. Around Earth, trapped energetic protons, electrons and other particles circulate at altitudes from about 500 to 40,000 kilometres in the Van Allen radiation belts. Soon after these radiation belts were discovered six decades ago, it was recognized that the main source of inner-belt protons (with kinetic energies of tens to hundreds of megaelectronvolts) is cosmic-ray albedo neutron decay (CRAND). In this process, cosmic rays that reach the upper atmosphere interact with neutral atoms to produce albedo neutrons, which, being prone to β-decay, are a possible source of geomagnetically trapped protons and electrons. These protons would retain most of the kinetic energy of the neutrons, while the electrons would have lower energies, mostly less than one megaelectronvolt. The viability of CRAND as an electron source has, however, been uncertain, because measurements have shown that the electron intensity in the inner Van Allen belt can vary greatly, while the neutron-decay rate should be almost constant. Here we report measurements of relativistic electrons near the inner edge of the inner radiation belt. We demonstrate that the main source of these electrons is indeed CRAND, and that this process also contributes to electrons in the inner belt elsewhere. Furthermore, measurement of the intensity of electrons generated by CRAND provides an experimental determination of the neutron density in near-Earth space-2 × 10-9 per cubic centimetre-confirming theoretical estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.