Abstract

Nonideal complex multicomponent plasmas generated from dielectric compound materials are of crucial importance to many critical technologies, and the need to measure and determine the electrical conductivity of these plasmas is imperative. In this paper, we present preliminary successful measurements of the electrical conductivity of weakly nonideal partially ionized complex plasma mixtures generated from dielectric materials. The complex multicomponent partially ionized vapors were generated using an electrothermal plasma source operated in the ablation-controlled arc regime, where the compound dielectric materials were used as the liner of the capillary wall serving as the source of plasma species. The measured discharge current was used in conjunction with the active or pure resistive part of the recorded discharge voltage to calculate the electrical conductivity as a function of time. A comprehensive 1-D time-dependent computer code with radiation transport, which uses the recovered ohmic input power as the only driving force of the computations, was used to report the corresponding plasma state. Measurements in the temperature range of 11000-16200 K and density range of 0.1-25 kg/m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> were performed, and the results were presented, discussed, and compared with theoretical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call