Abstract

The operation of dipole probes in measuring electric fields in conductive media exposed to temporally varying magnetic fields is discussed. The potential measured by the probe can be thought of as originating from two contributions to the electric field, namely the gradient of the scalar electric potential and the temporal derivative of the magnetic vector potential. Using this analysis, it is shown that the exact form of the wire paths employed when using electric field probes to measure the effects of temporally varying magnetic fields is very important and this prediction is verified via simple experiments carried out using different probe geometries in a cylindrical sample exposed to a temporally varying, uniform magnetic field. Extending this work, a dipole probe has been used to measure the electric field induced in a cylindrical sample by gradient coils as used in magnetic resonance imaging (MRI). Analytic solutions for the electric field in an infinite cylinder are verified by comparison with experimental measurements. Deviations from the analytic solutions of the electric field for the x-gradient coil due to the finite length of the sample cylinder are also demonstrated.For more information on this article, see medicalphysicsweb.org

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.