Abstract

We propose a novel experimental method, based on a fiber Bragg grating (FBG) sensor, to measure the elastic properties of epoxy molding compound (EMC) from a single specimen configuration. The FBG sensor is embedded in the center of a cylindrical EMC specimen, and deforms together with the EMC. The Bragg wavelength (BW) shifts are documented during compressive and hydrostatic loadings. Young’s modulus and bulk modulus are determined from the BW shifts using the relationships between the elastic constants and the BW shift. Two major developments to accommodate the unique requirements of EMC testing include: (1) a large mechanical pressure to be applied during curing; and (2) a very high gas pressure required for hydrostatic testing. The shear modulus and Poisson’s ratio are calculated from the two measured constants to provide a complete set of elastic properties of EMC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.