Abstract

The current paper presents a novel experimental set-up which allows the automated determination of the drag coefficients of relatively large particles with complex shape. Typical examples of such types of particles are waste derived fuel (RDF) particles which are non-spherical and have a size up to a few centimeters. In contrast to conventional fossil fuel particles, where the particles may be considered as material points during the calculation of particle tracks in a reacting flow field, the spatial extent of RDF-particles and their lack of sphericity lead to pronounced self-induced movement and associated variations in the drag-coefficients.The experiments are based on a drop shaft equipped with two digital cameras. This allows to obtain time resolved stereo image sequences from which the settling velocity of particles, the self-induced velocity fluctuations and the corresponding drag and lift coefficients can be derived. As the system is automated, a large number of particles can be examined and statistical information on the distribution of drag coefficients can be obtained.In this publication, the methodology of these drop shaft measurements and their evaluation will be presented. Additionally drag coefficients of isometric spherical and non-spherical particle geometries (spheres, cubes, square plates and circular disks) were measured and compared with known correlations for drag coefficients. Probability density functions for the properties of typical RDF particles will be presented to highlight the potential of the new set-up.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.