Abstract

Accurate measurement of relative distance and orientation of two nearby quantum particles is discussed. We are in particular interested in a realistic description requiring as little prior knowledge about the system as possible. Thus, unlike in previous studies, we consider the case of an arbitrary relative orientation of the two atoms. For this, we model the atom with complete Zeeman manifolds, and include parallel as well as orthogonal dipole–dipole couplings between all states of the two atoms. We find that it is possible to determine the distance of the two atoms independent of the orientation, as long as the particles are sufficiently close to each other. Next, we discuss how in addition the alignment of the atoms can be measured. For this, we focus on the two cases of atoms in a two-dimensional waveguide and of atoms on a surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.