Abstract

In carbon fiber reinforced plastic (CFRP) composite, the alignment of continuous carbon fibers guides the directional flow of eddy currents, which is beneficial to the structural and damage detection. In this study, for the purpose of impact damage repair, the transmitter-receiver (T-R) and the flat-tangent eddy current probes are used to determine the fiber orientations and stacking sequence in the CFRP laminate by surface scanning. Theoretical analysis shows that the T-R probe can flexibly pick up the magnetic field generated by the stretched eddy current in CFRP layers. In the meanwhile, the flat-tangent probe possesses layer selective characteristics. By calculating the fiber distribution images of individual directions based on two-dimensional fast Fourier transform (2D-FFT) and comparing the order of pixel intensity values of these images, the fiber orientation and the stacking sequence in the laminate plates can be obtained simultaneously, which provides guidance for damage detection and repair of the CFRP structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call