Abstract

A modification of nuclear quadrupole double resonance with coupled multiplet is proposed which can be used for the measurement of the dipolar structure of the 17O nuclear quadrupole resonance lines in case of a strong 1H17O dipolar interaction. The technique is based on magnetic field cycling between a high magnetic field and zero magnetic field and on the simultaneous application of three rf magnetic fields with the frequencies that are close to the three 17O NQR frequencies ν5/2−1/2>ν5/2−3/2⩾ν3/2−1/2 during the time spent in zero static magnetic field. When the sum of the two lower irradiation frequencies ν1+ν2 is not equal to the highest irradiation frequency ν, the three-frequency irradiation increases the proton relaxation rate in zero magnetic field and consequently decreases the proton NMR signal at the end of the magnetic field cycle. The new technique is theoretically analyzed and compared to the single-frequency and two-frequency irradiation techniques. It is shown that the sensitivity of the new technique exceeds the sensitivity of the two-frequency irradiation technique. As a test of the new technique we measured the shape of the highest-frequency 17O NQR line in paraelectric KH2PO4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.