Abstract

Rhodopsin-containing disks, isolated from rod outer segments of bovine retina, align at high magnetic fields with their membrane normal parallel to the magnetic field. After light-activation of rhodopsin, transient binding of the C-terminal transducin undecapeptide, selectively labeled with 15N at Leu5 and Gly9, results in residual dipolar contributions to the 1J(NH) splittings for these two residues. Both residues show 1J(NH) splittings which are smaller than in the dark-adapted or rhodopsin-free sample, and return to their isotropic values at a rate determined by the decay of the meta II state of rhodopsin. The dipolar couplings indicate that in the bound state, N-H vectors of Leu5 and Gly9 make angles of 48+/-4 degrees and 40+/-8 degrees, respectively, with the disk normal. These 'transferred' dipolar couplings potentially offer a useful method for studying the conformation and orientation of flexible, low affinity ligands when bound to oriented integral membrane receptors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.