Abstract

We demonstrate the depth measurement method of holographic images using integral imaging. The depth information of holographic images can be obtained with a single capture by conventional integral imaging pickup system composed of a micro lens array (MLA) and an image sensor. In order to verify the feasibility of our proposed method, an elemental image set of holographic images formed by a MLA was generated by a computer, and then refocused images at different planes were reconstructed numerically using computational integral imaging reconstruction (CIIR) technique for depth measurement. Note that we set the distance between MLA and image sensor as focal length of micro lens for large depth of focus. From the numerical results, we can measure the depth representation of holographic images successfully. However, refocused images from an optically captured elemental image set provide poor depth discrimination due to expected error in distance between MLA and image sensor. Only an object in a particular narrow depth range can be focused clearly when the image sensor is placed out of the MLA focal plane. The simulated results in this condition matched reasonably with the experiment result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.