Abstract

Because the nature of failure in concrete is complicated due to the material heterogeneity, a robust measuring method is essential to obtain reliable deformation data. A nondestructive displacement evaluation system using a digital image cross-correlation scheme, often called computer vision, is developed to make microscopic examinations of the fracture processes in concrete. This is a full-field measuring method that gives an accuracy within the micron range for a 100 mm × 75 mm viewing area. A feedback signal that combines the lateral and axial deformations provides a well-balanced imaging rate both before and after the peak load. Displacement vector diagrams or displacement contour maps of concrete reveal highly nonuniform deformations even in the elastic range. The processes of fracture in concrete are well defined at different deformation levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.