Abstract

This study was performed to characterize the dominant frequencies present in the boundary layer uptsream of and in the corner separation zone of a compression surface in Mach 4.5 flow and to determine a control effect of transient plasma actuation on the boundary layer. Schlieren imaging was used to distinguish the corner separation zone for 20°, 25°, and 30° compression ramps mounted on flat plates. Spectra of the natural disturbances present in the boundary layer and separation zone were gathered using a high-speed Shack-Hartmann wavefront sensor and surface mounted PCBTM pressure sensors while varying flow parameters by adjusting total pressure, temperature, and ramp angle. Shallow cavity discharge plasma actuators were used as a high-frequency localized thermal forcing mechanism of the boundary layer. The plasma effect was negligible for forcing frequencies (50 kHz) below the natural dominant frequency (~55-80 kHz). High frequency perturbations that can promote the transition to turbulence were amplified when the plasma forcing frequency (100 kHz) was higher than the natural dominant frequency (~55-80 kHz). This technique can potentially be used for active control of hypersonic boundary layer transition and the supersonic flow structure on the compression surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call