Abstract

An experimental study to visualize and measure the concentration distribution of hydrogen gas flow using the Raman scattering was performed. A Nd:YAG laser of wavelength at 355 nm was used, and the beam pattern was transformed into a rectangle and a sheet beam was formed. The Raman scattered light was observed at a right angle with respect to the laser beam axis using a gated ICCD camera and an interference filter. Shadowgraph images were obtained at the same condition. The Raman scattering light image from atmospheric nitrogen was first acquired and the function of Raman scattering light acquisition and the background light suppression was confirmed. Next, images of the Raman scattering light image and shadowgraph of hydrogen gas discharged from a nozzle into the atmosphere were acquired. The two obtained Raman images were compared and the spatial concentration distribution of the flow of the hydrogen gas at different flow rates was calculated. This method is effective for visualizing the gas flow and measuring the concentration distribution of the Raman active molecules, such as hydrogen gas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.