Abstract

Tailoring radiative properties such as spectral control of thermal emission is beneficial in many applications such as space cooling and energy harvesting. The effect of magnetic polaritons (MPs) on spectral modulation has been analyzed previously and shown to exhibit omnidirectional behaviors when magnetic polaritons are excited in metallic grating structures with a dielectric spacer on a metallic film. The present work provides an experimental demonstration of coherent thermal emission from such a microstructure in the infrared region at both room and elevated temperatures. Samples with different patterns are fabricated to study the geometric effect on the MPs. The emittance at elevated temperatures is directly measured using a home-built emissometer, while the room-temperature emittance is indirectly obtained from the reflectance measurements. The rigorous coupled-wave analysis and the LC model are employed to elucidate the mechanisms, by incorporating the Drude model with a temperature-dependent scattering rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call