Abstract

We report a new method to measure the CO(2)-laser-irradiation-induced refractive index modulation in the core of a single-mode optical fiber for the purpose of design and fabrication of long-period fiber gratings (LPFGs) without applying tension. Using an optical fiber Fabry-Perot interferometer, the laser-induced axial refractive index perturbation was measured. We found that the CO(2)-laser-irradiation-induced refractive index change in the fiber core had a negative value and that the magnitude was a sensitive function of the laser exposure time following almost a linear relation. Under the assumption of a Gaussian-shaped refractive index modulation profile and based on the first two terms of Fourier series approximation, the measured refractive index perturbations were used to simulate the LPFG transmission spectra. LPFGs with the same laser exposure parameters were fabricated without applying tension, and their spectra were compared with those obtained by simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.