Abstract

Progressive in vitro culturing of interleukin-3 (IL-3) dependent normal murine mastocytes (PB-3) resulted in a variant cell line (PB-1) able to grow without exogenous IL-3 and which was tumorogenic in syngenic mice. Bivariate flow cytometry was used to evaluate the c-myc protein and DNA content of PB-3 and PB-1 cells. The c-myc protein was detected by specific monoclonal antibodies. Kinetic characteristics of PB-3 and PB-1 cell lines, namely, the duration of the G1, S and G2 + M cell cycle phases were also evaluated using the bromodeoxyuridine (BrdU) pulse-chase method and BrdU/DNA flow cytometry. Levels of c-myc protein in PB-1 cells were about two-fold higher than those of PB-3 cells in all cell cycle phases. Mean duration of the cell cycle (Tc) was 15.3 h for PB-3 cells and 12.4 h for PB-1 cells. Shortening in Tc for the transformed cells was due to a decrease of nearly 30% in mean duration of the G1 phase (from 8 h to 5.7 h). No significant differences were found in the duration of the S and G2 + M phases. These results indicate that acquired IL-3 independency in vitro and tumorogenicity of PB-1 cells were accompanied by a doubling of c-myc protein level and by a parallel shortening, or bypass, of the regulatory events within the G1 phase of the cell cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call