Abstract

Near-infrared spectroscopy (NIRS) has been used for measurement of changes in cerebral hemoglobin concentrations in neonates to study cerebral oxygenation and hemodynamics. In this study, measurements by time-resolved reflectance spectroscopy (TRS) were performed in a piglet model with various degrees of cerebral oxygenation to estimate the differential pathlength factor (DPF). A portable three-wavelength TRS system (TRS-10, Hamamatsu Photonics K.K.) with a probe attached to the head of a piglet was used. Eleven newborn piglets were anesthetized and respired by a ventilator to induce stepwise hypoxia loading. The DPF showed positive linear relationship with arterial hemoglobin (Hb) oxygen saturation and sagittal sinus venous Hb oxygen saturation at 761 and 795 nm. The DPF at 835 nm also showed very slight positive linear relationship with arterial hemoglobin oxygen saturation. The DPF values obtained in this study should contribute to a better understanding of noninvasive measurements by NIRS in neonates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.