Abstract
Our objectives were to determine if milk casein as a percentage of true protein (CN%TP) estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) is equivalent to CN%TP estimated by Kjeldahl, and to determine the proportion of casein (CN), casein proteolysis products (CNPP), and serum protein (SP) from milk true protein (TP) that goes into the Kjeldahl noncasein nitrogen (NCN) filtrate and the proportion that stays in the NCN precipitate using SDS-PAGE. Raw milk samples were collected from 16 mid-lactation Holstein cows twice a week for 2 wk. These milks were analyzed for Kjeldahl total nitrogen, nonprotein nitrogen, and NCN content in duplicate, and by SDS-PAGE. The CN%TP determined by Kjeldahl was compared with the CN%TP estimated by SDS-PAGE calculated in 2 ways: as a percentage of only intact caseins divided by TP and as a percentage of both intact caseins and CNPP divided by TP. Three milks varying in fat, lactose, TP, CN, and SP content were formulated. These milks were analyzed in duplicate for Kjeldahl total nitrogen, nonprotein nitrogen, and NCN content, and each of the NCN filtrate and NCN precipitate were analyzed in duplicate by SDS-PAGE for relative quantity (%) of CN, CNPP, and SP. We found that the estimate of CN%TP by Kjeldahl was higher than the estimate of CN%TP by SDS-PAGE that was calculated as only intact CN divided by the total of all protein bands. However, no difference was detected in the estimate of CN%TP by Kjeldahl compared with CN%TP by SDS-PAGE when CNPP were included as CN in the calculation of SDS-PAGE results. Based on SDS-PAGE results, we found that a majority (89%) of the CNPP from the milk (approximately 10.13 out of 11.41% TP) were retained in the Kjeldahl NCN precipitate. Thus, CN%TP measured by Kjeldahl underestimates the amount of proteolytic damage that has been done to CN in milk. It is important for the dairy industry to correctly and rapidly measure the extent of proteolytic damage to milk protein to correctly value milk from a product quality and yield point of view. A rapid and quantitative measure of proteolytic damage to milk protein is needed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.