Abstract

Abstract Two measurement methods which are multiwave ultrasonic pulsed Doppler (multiwave UVP) method and wire mesh tomography (WMT) have been applied to the measurement of bubbly two-phase flow. Velocity profiles of bubbles and liquid have been measured using multiwave UVP. Simultaneously, cross-sectional void fraction distribution has been measured using WMT. As the result, a combination method has been set up. The measured parameters are indispensable in order to obtain detailed structures of two-phase flow. Multiwave UVP method exploits two basic ultrasonic frequencies which are 2 MHz and 8 MHz. Simultaneous measurement of velocity profiles of bubbles (using 2 MHz frequency) and those of liquid (using 8 MHz frequency), at the same position, is enabled. A multiwave ultrasonic transducer (multiwave TDX) which is able to emit and receive the two ultrasonic frequencies along the measurement line at the same time has been applied. The signal processing is based on the pulsed Doppler method. Using the combination method, first, instantaneous velocity profiles and void fraction distribution have been measured simultaneously for air-water counter-current bubbly flow in a vertical pipe. Flow structure has been clarified. Effect of initial condition on void fraction distribution has been confirmed. Next, measurements have been carried out for subcooled boiling bubbly flow in a vertical pipe. For measurement of subcooled boiling flow, a high temperature wire mesh sensor (WMS) has been developed. A method for separation of velocity profiles of bubbles with different sizes and velocities has been suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.