Abstract

A detection scheme for both Brownian and Neel relaxation of magnetic nanoparticles (MNPs) is demonstrated by a mixing-frequency method in this paper. MNPs are driven into the saturation region by a low-frequency sinusoidal magnetic field. A high-frequency sinusoidal magnetic field is then applied to generate mixing-frequency signals that are highly specific to the Brownian relaxation of MNPs. These highly sensitive mixing-frequency signals from MNPs are picked up by a pair of balanced built-in detection coils. The relationship between MNPs' relaxation time and phase delays of the mixing-frequency signals behind the applied field is derived, and is experimentally verified. Magnetite MNPs with the core diameter of 35 nm are used for the measurement of Brownian relaxation, and Magnetite MNPs with the core diameter of 12 nm are used for the measurement of Neel relaxation. The results show that both Brownian and Neel relaxation depend on the magnetic offset field. This study provides an in-depth understanding of the relaxation mechanisms of MNPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.