Abstract

In normal experimental operation, a diagnostic neutral beam (DNB) can produce 6 A of extracted beam current in hydrogen at an energy of 49 keV with a pulse length of 100 ms. Hydrogen and deuterium beams can be produced as well. The diagnostic neutral beam has been added to the diagnostic set so that charge-exchange recombination spectroscopy (CXRS) can be used to acquire ion temperature and rotation. The beam power and beam profile distribution of the DNB injection can be obtained with a thermocouple probe measurement system on the HT-7 superconducting tokamak. The thermocouple probe measurement system with 13 thermocouples crossly distributed on the probe plate was used to measure the temperature rise of each coppery target, so the profile distribution of the ion/neutral beam was obtained by calculation. In this paper, the structure of the probe plate on the DNB for HT-7 tokamak and some measurement results are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.