Abstract

Conventional frequency-domain acoustic-field analysis techniques are typically limited to the bandwidth of the field under study. However, this limitation may be too restrictive, as prior work suggests that field analyses may be shifted to lower or higher frequencies that are outside the field's original bandwidth [Worthmann and Dowling (2017). J. Acoust. Soc. Am. 141(6), 4579-4590]. This possibility exists because below- and above-band acoustic fields can be mimicked by the frequency-difference and frequency-sum autoproducts, which are quadratic products of frequency-domain complex field amplitudes at a pair of in-band frequencies. For a point source in a homogeneous acoustic half-space with a flat, pressure-release surface (a Lloyd's mirror environment), the prior work predicted high correlations between the autoproducts and genuine out-of-band fields at locations away from the source and the surface. Here, measurements collected in a laboratory water tank validate predictions from the prior theory using 40- to 110-kHz acoustic pulses measured at ranges between 175 and 475 mm, and depths to 400 mm. Autoproduct fields are computed, and cross-correlations between measured autoproduct fields and genuine out-of-band acoustic fields are above 90% for difference frequencies between 0 and 60 kHz, and for sum frequencies between 110 and 190 kHz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.