Abstract

To investigate the efficiency of a new method (TT-Upslope) for transit time (Δt) estimation from cardiovascular MR (CMR) velocity curves. Fifty healthy volunteers (40 ± 15 years) underwent applanation tonometry to estimate carotid-femoral pulse wave velocity (cf-PWV) and carotid pressure measurements, and CMR to estimate aortic arch-PWV and ascending aorta distensibility (AAD). The Δt was calculated with TT-Upslope by minimizing the area delimited by two sigmoid curves fitted to the systolic upslope of the ascending (AAC) and descending (DAC) aorta velocity curves, and compared with previously described methods: TT-Point using the half maximum of AAC and DAC, TT-Foot using AAC and DAC feet, and TT-Wave by minimizing the area between AAC and DAC curves using cross correlation. All the Δt methods provided a high reproducibility of arch-PWV. However, TT-Upslope and TT-Wave resulted in better correlations with aging (r = 0.83/r = 0.83 versus r = 0.47/r = 0.72), cf-PWV (r = 0.69/r = 0.70 versus r = 0.34/r = 0.59), and AAD (r = 0.81/r = 0.71 versus r = 0.61/r = 0.60). Furthermore, TT-Upslope resulted in stronger relationship between arch-PWV and AAD according to a theoretical model and provided better characterization of older subjects compared with TT-Wave. Arch-PWV estimated with CMR using the TT-Upslope method was found to be reproducible and accurate, providing strong correlations with age and aortic stiffness indices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.