Abstract

Atherosclerosis is the main cause of circulatory diseases, and it is very important to diagnose atherosclerosis in its early stage. In an early stage of atherosclerosis, the luminal surface of an arterial wall becomes rough due to injury of the endothelium. Conventional ultrasonic diagnostic equipments cannot detect such micron-order surface roughness because their spatial resolution is, at most, 100 µm. In this study, for the accurate detection of surface roughness, ultrasonic beams were insonified from various angles relative to the surface of an object that has a micron-order asperity. Then, we focused on the angular dependence of echo amplitude and frequency characteristics in both temporal and spatial domains. Using this method, it is shown that the angular dependence and frequency characteristics vary when an object has a surface roughness that cannot be detected by conventional B-mode imaging using linear scanning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.