Abstract

Angle-resolved optical scattering properties of ovarian tissue on different optical coherence tomography (OCT) imaging planes were quantitatively measured by fitting the compounded OCT A-lines into a single scattering model. Higher cross correlation value of angle-resolved scattering coefficients between different OCT imaging planes was found in normal ovaries than was present in malignant ovaries. The mean cross correlation coefficient (MCC) was introduced in this pilot study to characterize and differentiate normal and malignant ovaries. A specificity of 100% and a sensitivity of 100% were achieved by setting MCC threshold at 0.6 in the limited sample population. The collagen properties such as content, structure and directivity were found to be different within OCT imaging penetration depth between normal and malignant ovarian tissue. The homogeneous three-dimensional collagen fiber network observed in the normal ovary effectively explains the stronger cross correlation of angle-resolved scattering properties on different imaging planes while the heterogeneity observed in the malignant ovary suggests a weaker correlation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.