Abstract

It is demonstrated that reliable aluminum-carbon distances can be measured in samples with (13)C natural abundance by NMR spectroscopy. Overcoupled resonators, with only one radio-frequency synthesizer and one amplifier, are used to irradiate in the same pulse sequence (27)Al and (13)C nuclei, which differ by only 3.6 % in Larmor frequencies. The combination of (27)Al saturation pulse with heteronuclear dipolar recoupling yields dipolar dephasing of the (13)C signal, which only depends on the Al-C distance and the efficiency of the saturation pulse. Therefore, reliable distances can be obtained by rapid fitting of experimental data to an analytical expression. It is demonstrated that with natural isotopic abundance this approach allows recovery of Al-C distances of 216 pm for the covalent bond in lithium tetraalkyl aluminates, commonly used as a co-catalyst in olefin polymerization processes, and which range from 274 to 381 pm for the three carbon atoms in aluminum lactate. The accuracy of the measured internuclear distances is carefully estimated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.