Abstract
Magnetic resonance imaging (MRI) has been used to explore acoustic streaming caused in water under ultrasonic exposure conditions similar to those used for diagnostic applications. Streaming was established in an enclosed tube with acoustically transparent end windows, using a pulsed, weakly-focused transducer of acoustic frequency 3.5 MHz. Phase-detection MRI was used to image and quantify streaming profiles in the region of the acoustic focus. Acoustic powers in the range 0.4 mW to 100 mW were used. The sensitivity of the technique enabled streaming velocities down to 0.1 mm s −1 to be measured, generated by acoustic power less than 1 mW. In addition, acoustic streaming generated within open meshes with minimum pore dimensions of 3.0 mm and 2.0 mm was measured. The flow velocity in the coarser mesh reached 0.9 mm s −1 at 95 mW total acoustic power. These observations demonstrate that acoustic streaming is probably a much more general phenomenon in diagnostic ultrasound (ultrasound) than previously recognised. The combination of magnetic resonance and ultrasound shows promise as a diagnostic method for the differentiation of cystic lesions in vivo, and for their characterisation, with sensitivity significantly greater than using ultrasound alone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.