Abstract

Inadequate oxygen delivery to the tissues frequently results in significant metabolic acidosis. The resultant cellular and organ dysfunction can increase morbidity, mortality and hospital stay. Early diagnosis of shock can lead to early resuscitation efforts that can prevent ongoing tissue injury. This review focuses on the metabolic, hemodynamic and regional perfusion endpoints utilized in the diagnosis of metabolic acidosis resulting from shock. Resuscitation strategies aimed at supranormal oxygen delivery will be discussed. Serum pH, lactate, base deficit and bicarbonate have all been extensively studied as clinical markers of metabolic acidosis in shock. While their trend helps guide resuscitation, no single marker or specific value can be utilized to guide resuscitation for all patients. Hemodynamic parameters and regional tissue endpoints are designed to identify compensated shock before it progresses to uncompensated shock. Resuscitation strategies initiated in the early phases of shock can reduce complications and death. Efforts to resuscitate patients to supranormal oxygen delivery endpoints have demonstrated mixed success, with several notable complications. Despite the large number of endpoints available to the clinician, none are universally applicable and none have independently demonstrated improved survival when guiding resuscitation. Patients who respond well to initial resuscitation efforts demonstrate a survival advantage over nonresponders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.