Abstract

Investigating the motion of discrete oil droplets in a rotating flow field can provide a theoretical basis for optimizing the flow field and structural parameters of hydrocyclones and centrifugal separation equipment. In the present work, the particle image velocimetry (PIV) method was applied to study the velocity distribution of a three-dimensional axial-rotor-driven rotating flow field and the influence of the velocity distribution of different rotor speeds on the flow field. The radial migration of oil droplets with different particle sizes in the rotating flow field was visually analyzed using high-speed video (HSV). The results showed that the oil droplets with the same radial position had diameters of 2.677 and 4.391 mm, whereas the movement times to the axis were 0.902 and 0.752 s. The larger the oil droplet size, the shorter the time to move to the axial center of the rotating flow field. The radial velocities of oil droplets with diameters of 2.677 and 2.714 mm were 0.0221 and 0.02 m·s−1, respectively. In addition, a mathematical expression was established between the radial migration time and the oil droplet size in the rotating flow field. The accuracy of the proposed expression was verified using experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call