Abstract

ABSTRACT We present a measurement of the two-dimensional (2D) redshift-space power spectrum for the Baryon Oscillation Spectroscopic Survey Data Release 11 CMASS galaxies in the northern Galactic cap based on the method developed by Jing & Börner. In this method, we first measure the 2D redshift-space correlation function and obtain the 2D power spectrum based on Fourier transform of the correlation function. The method is tested with an N-body mock galaxy catalog, which demonstrates that the method can yield an accurate and unbiased measurement of the redshift-space power spectrum given that the input 2D correlation function is correct. Compared with previous measurements in literature that are usually based on direct Fourier transform in redshift space, our method has the advantages that the window function and shot noise are fully corrected. Thus, our measurement can facilitate a direct comparison with the theoretical predictions. Our 2D power spectrum, by construction, can reproduce the 2D correlation function, and it can reproduce, for example, the 2D power spectrum of Beutler et al. accurately if ours is convolved with the window function they provided. We then develop a method to measure the structure growth rate, by separating the anisotropic redshift-space power spectrum from the isotropic real-space power spectrum. We have carefully corrected for the nonlinearities in the mapping from real space to redshift space, according to the theoretical model of Zhang et al. Finally, we obtain the measurement of structure growth rate f( )σ 8( ) = 0.438 ± 0.037 at the effective redshift = 0.57. The result is useful for constraining cosmological parameters. The measurements of the 2D power spectrum will be released soon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.