Abstract

A hybrid multiplexing holographic velocimetry used for characterizing three-dimensional, three-component (3D–3C) flow behaviors in microscale devices was designed and tested in this paper. Derived from the concept of holographic particle image velocimetry (HPIV), a new experimental facility was realized by integrating a holographic technique with a state-of-the-art multiplexing operation based on a microPIV configuration. A photopolymer plate was adopted as an intermedium to record serial stereoscopic images in the same segment. The recorded images were retrieved by a scanning approach, and, afterwards, the distributions of particles in the fluid were analyzed. Finally, a concise cross-correlation algorithm (CCC) was used to analyze particle movement and, hence, the velocity field, which was visualized by using a chromatic technique. To verify practicability, the stereoscopic flow in a backward facing step (BFS) chamber was measured by using the new experimental setup, as well a microPIV system. The comparison indicated that the photopolymer-based velocimetry was practicable to microflow investigation; however, its accuracy needed to be improved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.