Abstract
Despite quantum electrodynamics (QED) being one of the most stringently tested theories underpinning modern physics, recent precision atomic spectroscopy measurements have uncovered several small discrepancies between experiment and theory. One particularly powerful experimental observable that tests QED independently of traditional energy level measurements is the "tune-out" frequency, where the dynamic polarizability vanishes and the atom does not interact with applied laser light. In this work, we measure the tune-out frequency for the 23S1 state of helium between transitions to the 23P and 33P manifolds and compare it with new theoretical QED calculations. The experimentally determined value of 725,736,700(260) megahertz differs from theory [725,736,252(9) megahertz] by 1.7 times the measurement uncertainty and resolves both the QED contributions and retardation corrections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.