Abstract

The production cross-section of the medical isotope, 99Mo from the enriched 100Mo(n,2n) reaction with the average neutron energies of 21.9 and 26.5 MeV has been determined for the first time by using an off-line γ-ray spectrometric technique. The average neutron energies were generated by using the 9Be(p,n) reaction with the proton energies of 35 and 45 MeV from the MC50 cyclotron of the Korea Institute of Radiological and Medical Sciences (KIRAMS) at Seoul, South Korea. The 100Mo(n,2n) reaction cross-section as a function of neutron energy was also calculated theoretically by using the computer code TALYS-1.8 and EMPIRE-3.2 Malta. The experimental results are in close agreement with the theoretical values from TALYS-1.8. However, the present data at the neutron energy of 21.9 MeV is slightly lower and at 26.5 MeV is higher than the values from EMPIRE-3.2 Malta.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.