Abstract

The cosmogenic radionuclide 10Be was measured from drill core sediments from Lake Malawi in order to help construct a chronology for the study of the tropical paleoclimate in East Africa. Sediment samples were taken every 10 m from the core MAL05-1C to 80 m in depth and then from that depth in core MAL05-1B to 382 m. Sediment samples were then later taken at a higher resolution of every 2 m from MAL05-1C. They were then leached to remove the authigenic fraction, the leachate was processed to separate out the beryllium isotopes, and 10Be was measured at the TAMS Facility at the University of Arizona. The 10Be/ 9Be profile from Lake Malawi sediments is similar to those derived from marine sediment cores for the late Pleistocene, and is consistent with the few radiocarbon and OSL IR measurements made from the same core. Nevertheless, a strong correlation between the stable isotope 9Be and the cosmogenic isotope 10Be suggests that both isotopes have been well mixed before deposition unlike in some marine sediment cores. In addition, the correlation of beryllium isotopes to a proxy of lake level TOC (Total Organic Matter) from Lake Malawi indicates that the concentrations of 10Be in the lake sediments result from the combined effects of global and local climates on lake level, local hydrology, and sediment transport in the Lake Malawi basin rather than as a direct response to its production in the atmosphere modulated by the intensity of the Earth's dipole. Therefore, a direct correlation of the 10Be/ 9Be to a chronology derived from the paleomagnetic variations measured from marine sediments was not possible. Nevertheless, a comparison of the 10Be/ 9Be chronology, allowing for decay, at Lake Malawi to that of the global marine paleomagnetic record suggests that the bottom of core MAL05-1B is no more than 750 ka in age.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.