Abstract

Fisher information is a key notion in the whole field of quantum metrology. It allows for a direct quantification of the maximal achievable precision of the estimation of the parameters encoded in quantum states using the most general quantum measurement. It fails, however, to quantify the robustness of quantum estimation schemes against measurement imperfections, which are always present in any practical implementations. Here, we introduce a new concept of Fisher information measurement noise susceptibility that quantifies the potential loss of Fisher information due to small measurement disturbance. We derive an explicit formula for the quantity, and demonstrate its usefulness in the analysis of paradigmatic quantum estimation schemes, including interferometry and superresolution optical imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.