Abstract
The response of a magneto-rheological fluid (MRF) to a change of magnetic flux density is investigated by using a commercial plate–plate magneto-rheometer MCR501 (Anton Paar GmbH) at constant shear rate. The instrument was modified to allow an online determination of the transient flux density in the MRF. Both current and voltage imposition to the magneto-cell were applied by using a power operational amplifier to drive the electromagnet. Assuming a Maxwell behavior with switching time λ and a linear increase in shear stress with flux density, analytic relations for the transient shear stress are derived for sinusoidal and single exponential flux densities vs time. True switching times of a few milliseconds are only obtained if the low pass filter in the original MCR501 torque signal is surpassed by a firmware allowing a sampling rate of 0.1 ms. For a sinusoidal flux density, the switching time is derived from the modulation depth of the shear stress. An upper bound of λ < 3 ms for a flux density of 0.8 T was found. For step coil current imposition of 1 T magnitude, switching times of 2.8 ms (start-up) and 1.8 ms (shutdown) allowed to fit the transient torque signal more than 2/3 of the total change. Finally, the effect of a sigmoidal characteristic on the switching time determination is addressed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.